Equilibrium Concentrations:

name:

1) The given chemical reaction illustrates the synthesis of a chlorofluorocarbon (CCl₄), which was formerly widely employed in refrigeration and aerosol industries before its detrimental impact on the ozone layer was recognized.

<u>Reaction</u>: $CS_2(g)$ + $3CI_2(g)$ \rightleftharpoons $S_2CI_2(g)$ + $CCI_4(g)$

In a 1.5-liter container, 1.35 moles of CS_2 and 2.085 moles of Cl_2 are initially introduced. Upon reaching equilibrium, 0.51 moles of CCl_4 are formed.

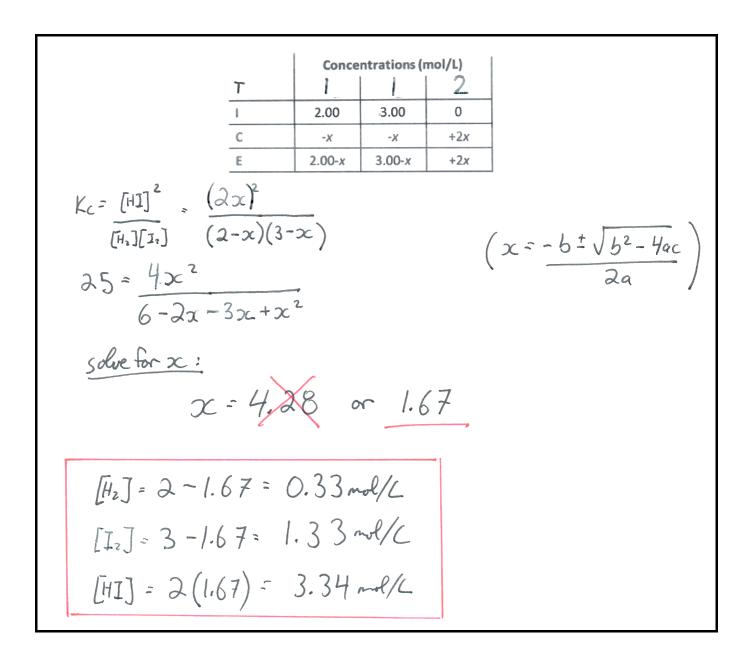
What is value of the equilibrium constant.

onnées :		Calcul:				
$n_{CS_{21}} = 1,35 \text{ mol}$	1.	1. Calcul des concentrations :				
$n_{Cl_{2i}} = 2,085 \text{ me}$ $n_{CCl_{4ég}} = 0,510 \text{ me}$		$[CS_2]_i = \frac{1,35 \text{ mm}}{1,50 \text{ L}}$	ol — = 0,900 mol/L	[CCl ₄] _{éq} =	$[CCI_4]_{\acute{e}q} = \frac{0,510 \text{ mol}}{1,50 \text{ L}} = 0,340 \text{ mol/L}$	
V = 1,50 L $K_c = ?$		$[CI_2]_i = \frac{2,085 \text{ m}}{1.50 \text{ L}}$	$\frac{1}{2} = 1,39 \text{ mol/L}$			
. Report des donn	nées et utilisati	on du tableau IVÉ	où $C_{eq} = C_i + \Delta C_i$	2:	 Calcul de la constante d'équilibre: 	
Concentration (mol/L)		on du tableau IVÉ + 3 Cl _{2 (g)} =			d'équilibre :	
Concentration						
Concentration (mol/L)	CS _{2 (g)}	+ 3 Cl _{2 (g)} =	\Rightarrow S ₂ Cl _{2(g)}	+ CCl _{4 (g)}	d'équilibre :	

2) The following synthesis reaction for NOBr takes place in a 2.5L container.

<u>*Reaction:*</u> $Br_2(g) + 2NO(g) \rightleftharpoons 2NOBr(g)$

At equilibrium the system contains 1.25 moles of Br₂, 0.75moles of NO, and 0.15moles of NOBr.


What is the value of the equilibrium constant for the above synthesis of NOBr and for the decomposition of NOBr.

Calcul: 1. Calcul des concentrations à l'équilibre: $C = \frac{n}{V}$ $[Br_{2}] = \frac{1,250 \text{ mol}}{2,50 \text{ L}} = 0,500 \text{ mol/L}$ $[NO] = \frac{0,750 \text{ mol}}{2,50 \text{ L}} = 0,300 \text{ mol/L}$ $[NOBr] = \frac{0,150 \text{ mol}}{2,50 \text{ L}} = 0,060 \text{ o mol/L}$ $C = \frac{1}{K_{c_{syn}}} = \frac{1}{0,080 \text{ o}}^{2} = 0,080 \text{ o}$ $K_{c_{dec}} = \frac{1}{K_{c_{syn}}} = \frac{1}{0,080 \text{ o}} = 12,5$ Calcul de la constante d'équilibre de la réaction inverse: $K_{c_{dec}} = \frac{1}{K_{c_{syn}}} = \frac{1}{0,080 \text{ o}} = 12,5$

3) Observe the following reaction:

<u>*Reaction*</u>: $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

If 2 moles of H_2 and 3 moles of I_2 are placed in a 1L vessel at 1100K, what is the concentration of each gas at equilibrium if the K value is equal to 25 ?

