- 1. a) Chloride ion (Cl⁻).
 - b) Carbonate ion (CO₂²⁻).
 - c) Hydrogenosulfate ion (HSO, =).
 - d) Hydrazine (N2H4).
- 2. a) Nitric acid (HNO₃).
 - b) Water (H,0).
 - c) Hydronium ion (H₃0+).
 - d) Carbonic acid (H2CO3).
- 3. 1. Calculation of the pOH:

$$pH + pOH = 14$$

 $pOH = 14 - pH = 14 - 11.9 = 2.1$

2. Calculation of the concentration of hydroxide ions:

$$p0H = -log[0H^-]$$

 $[0H^-] = 10^{-p0H} = 10^{-2.1} = 7.94 \times 10^{-3} mol/L$

Answer: The pOH is 2.1 and the concentration of the hydroxide ions (OH $^-$) is 7.9 \times 10 $^{-3}$ mol/L.

- a) Hydrochloric acid (HCI) dissociates completely into ions; therefore, it will have the same concentration as the acid, 4.5 mol/L.
 - b) $C_1 V_1 = C_2 V_2$ $C_2 = \frac{C_1 V_1}{V_2} = \frac{4.5 \text{ mol/L} \cdot 30 \text{ mt}}{100 \text{ mt}} = 1.35 \text{ mol/L}$

Since the hydrogen bromide (HBr) dissociates completely into ions, it will have the same concentration as the acid, 1.35 mol/L.

5. 1. Calculation of the pH:

$$pH = -log[H_2O^+] = -log(3.98 \times 10^{-7}) = 6.400$$

2. Calculation of the concentration of hydroxide ions:

$$\begin{split} & \textit{K}_{\textit{water}} = [\textit{H}_{3}\textit{O}^{+}] \cdot [\textit{O}\textit{H}^{-}] = 1 \times 10^{-14} \\ & [\textit{O}\textit{H}^{-}] = \frac{1 \times 10^{-14}}{[\textit{H}_{3}\textit{O}^{+}]} = \frac{1 \times 10^{-14}}{3.98 \times 10^{-7}} = 2.51 \times 10^{-8} \end{split}$$

Answer: The milk is mildly acidic, because its pH is 6.40. The concentration of the hydroxide ions (OH $^-$) is 2.51 \times 10 $^{-8}$ mol/L.

6. Note: Question 6 b should read:

$$"CI^{-}_{(aq)} + H_2O_{(I)} \Longrightarrow HCI_{(aq)} + OH^{-}_{(aq)}."$$

- a) HS-/H₂S and H₂O/OH-
- b) CI-/HCI and H₂0/OH-
- c) H₂S/HS⁻ and NH₃/NH₄⁺
- d) H_2SO_4/HSO_4^- and H_2O/H_3O^+

7. 1. Calculation of the concentration of hydronium ions:

$$pH = -log[H_3O^+] = 10^{-pH} = 10^{-4.72}$$

= 1.9054 × 10⁻⁵ mol/L

2. Calculation of the concentration of hydroxide ions:

$$\begin{split} & \textit{K}_{\textit{water}} = [\textit{H}_{3}\textit{O}^{+}] \cdot [\textit{O}\textit{H}^{-}] = 1 \times 10^{-14} \\ [\textit{O}\textit{H}^{-}] = & \frac{1 \times 10^{-14}}{[\textit{H}_{3}\textit{O}^{+}]} = \frac{1 \times 10^{-14}}{1.9054 \times 10^{-5}} \\ & = 5.248 \times 10^{-10} \, \text{mol/L} \end{split}$$

3. Calculation of the pOH:

$$pOH = -log[OH^{-}] = -log(5.248 \times 10^{-10}) = 9.28$$

Answer: The phenol solution (C_6H_6O) is acidic. The concentration of the hydronium ions (H_3O^+) is 1.9×10^{-5} mol/L, the concentration of the hydroxide ions (OH^-) is 5.2×10^{-10} mol/L and the pOH is 9.28.

Calculation of the concentration of hydronium and hydroxide ions:

$$K_{water} = [H_3 0^+] \cdot [0 H^-] = 2.5 \times 10^{-14}$$

= $x^2 = 2.5 \times 10^{-14}$
 $x = \sqrt{2.5 \times 10^{-14}} = 1.58 \times 10^{-7}$
 $[0 H^-] = [H_2 0^+] = 1.6 \times 10^{-7} \text{ mol/L}$

2. Calculation of the pH:

$$pH = -log[H_3O^+] = -log(1.6 \times 10^{-7}) = 6.8$$

Answer: Since the concentration of the two ions is the same, the pH and the pOH will be the same and will be close to 7. As a result, at 37°C, pure water is neutral. The value of 6.8 is due to uncertainties in calculations and measurements.

9. 1. Calculation of the concentration of hydroxide ions:

$$\begin{array}{l} pOH = -log[OH^-] \\ [OH^-] = 10^{-pOH} = 10^{-5.81} = 1.548 \times 10^{-6} \ mol/L \end{array}$$

2. Calculation of the concentration of hydronium ions:

$$\begin{split} K_{water} &= [\mathrm{H_3O^+}] \cdot [\mathrm{OH^-}] = 1 \times 10^{-14} \\ [\mathrm{H_3O^+}] &= \frac{1 \times 10^{-14}}{[\mathrm{OH^-}]} = \frac{1 \times 10^{-14}}{1.548 \times 10^{-6} \ \mathrm{mol/L}} \\ &= 6.545 \times 10^{-9} \ \mathrm{mol/L} \end{split}$$

3. Calculation of the pH:

$$pH = -log[H_30^+] = -log(6.545 \times 10^{-9}) = 8.18$$

Answer: The sodium bicarbonate (NaHCO $_3$) solution is basic. The concentration of the hydronium ions (H $_3$ O $^+$) is 6.5 \times 10 $^{-9}$ mol/L, the concentration of the hydroxide ions (OH $^-$) is 1.5 \times 10 $^{-6}$ mol/L and the pH is 8.18.

11. 1. Calculation of the concentration of hydronium ions:
 pH = ¬log[H₂0*]

$$[H_3O^*] = 10^{-pH} = 10^{-2.73} = 1.862 \times 10^{-3} \text{ mol/L}$$

2. Calculation of the concentration of hydroxide ions:

$$K_{water} = [H_30^+] \cdot [0H^-] = 1 \times 10^{-14}$$

$$[0H^-] = \frac{1 \times 10^{-14}}{[H_30^+]} = \frac{1 \times 10^{-14}}{1.862 \times 10^{-3}}$$

$$= 5.37 \times 10^{-12} \text{ mol/L}$$

Answer: The concentration of the hydronium ions (H_3O^+) is 1.9×10^{-3} mol/L and the concentration of the hydroxide ions (OH $_2$) is 5.4×10^{-12} mol/L.

12. pH = $log[H_3O^+] = -log(2.9 \times 10^{-4}) = 3.54$

Answer: This juice is acidic, because its pH is 3.54.

15. a) Since all of the acid dissolves, the concentration of the hydronium ions is 0.45 mol/L.

$$K_{water} = [H_3 0^+] \cdot [0H^-] = 1 \times 10^{-14}$$

$$[0H^-] = \frac{1 \times 10^{-14}}{[H_3 0^+]} = \frac{1 \times 10^{-14}}{0.45}$$

$$= 2.2 \times 10^{-14} \text{ mol/L}$$

Answer: The concentration of the hydronium ions (H_3O^+) is 0.45 mol/L and the concentration of the hydroxide ions (OH^-) is 2.2×10^{-14} mol/L.

 b) Since all of the base dissolves, the concentration of the hydroxide ions is 1.1 mol/L.

$$\begin{split} K_{water} &= [\mathrm{H_3O^+}] \cdot [\mathrm{OH^-}] = 1 \times 10^{-14} \\ [\mathrm{H_3O^+}] &= \frac{1 \times 10^{-14}}{[\mathrm{OH^-}]} = \frac{1 \times 10^{-14}}{1.1} \\ &= 9.1 \times 10^{-15} \, \mathrm{mol/L} \end{split}$$

Answer: The concentration of the hydronium ions ($\rm H_3O^+$) is 9.1 \times 10⁻¹⁵ mol/L, and the concentration of the hydroxide ions (OH⁻) is 1.1 mol/L.