It is observed that when 8.0 g of Lithium chloride (LiCl) at $25^{\circ} \mathrm{C}$ is dissolved in 100 mL of water inside a calorimeter the final temperature of the water is $38^{\circ} \mathrm{C}$.

Questions:

a) Calculate the molar heat of dissolution $\left(\Delta \mathrm{H}_{\mathrm{d}}\right)$ of Lithium chloride?
b) Write the thermochemical equation for the dissolution.
a)

$$
\begin{array}{ll}
\mathrm{m}=100 \mathrm{~mL}=100 \mathrm{~g} & \text { Step1: } \\
\mathrm{T}_{i}=25^{\circ} \mathrm{C} & \begin{array}{l}
\text { Determine if the dissolution reaction } \\
\text { is Endothermic or Exothermic }
\end{array} \\
\mathrm{T}_{f}=38^{\circ} \mathrm{C} & \begin{array}{l}
\text { If temperature of water increased it must have } \\
\text { absorbed heat energy from the dissolution } \\
\text { reaction. }
\end{array} \\
\Delta \mathrm{T}=13^{\circ} \mathrm{C} & \begin{array}{l}
\text { Therefore the dissolution reaction must have } \\
\mathrm{c}=4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)
\end{array} \\
\mathrm{Q}=? ? ? &
\end{array}
$$

Example 1:

It is observed that when 8.0 g of Lithium chloride (LiCl) at $25^{\circ} \mathrm{C}$ is dissolved in 100 mL of water inside a calorimeter the final temperature of the water is $38^{\circ} \mathrm{C}$.

Questions:

a) Calculate the molar heat of dissolution $\left(\Delta \mathrm{H}_{\mathrm{d}}\right)$ of Lithium chloride?
b) Write the thermochemical equation for the dissolution.

$$
\begin{aligned}
& \mathrm{m}=100 \mathrm{~mL}=100 \mathrm{~g} \\
& \mathrm{~T}_{i}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{f}=38^{\circ} \mathrm{C} \\
& \Delta \mathrm{~T}=13^{\circ} \mathrm{C} \\
& \mathrm{c}=4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right) \\
& \mathrm{Q}=? ? ?
\end{aligned}
$$

Step2: Calculate the Quantity of heat that was absorbed by the water

$$
\mathrm{Q}=\mathrm{m} \cdot \mathrm{c} \cdot \Delta \mathrm{~T}
$$

$$
\mathrm{Q}=(100)(4.18)(13)
$$

$$
\mathrm{Q}=5434 \mathrm{~J}
$$

Step3: Since it was determined that the dissolution reaction was exothermic:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{d}}=-\mathrm{Q} \\
& \underline{\mathrm{H}}_{\underline{d}}=-\mathbf{5 4 3 4 \mathrm { J }}
\end{aligned}
$$

Therefore 8 g of dissolved Lithium chloride released -5434 J of Heat Energy

Example 1:

It is observed that when 8.0 g of Lithium chloride (LiCl) at $25^{\circ} \mathrm{C}$ is dissolved in 100 mL of water inside a calorimeter the final temperature of the water is $38^{\circ} \mathrm{C}$.

Questions:
a) Calculate the molar heat of dissolution $\left(\Delta \mathrm{H}_{\mathrm{d}}\right)$ of Lithium chloride?
b) Write the thermochemical equation for the dissolution.

$$
\begin{aligned}
& \text { Step4: In order to determine the Molar } \\
& \text { Heat of dissolution we must know how } \\
& \text { many moles of Lithium chloride we are } \\
& \text { dealing with: } \\
& \qquad \begin{aligned}
& \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \\
& \qquad \mathrm{n}=\frac{8 \mathrm{~g}}{42.4 \mathrm{~g} / \mathrm{mole}} \\
& \underline{\mathbf{n}=\mathbf{0 . 1 8 8} \text { moles }}
\end{aligned}
\end{aligned}
$$

Example 1:

It is observed that when 8.0 g of Lithium chloride (LiCl) at $25^{\circ} \mathrm{C}$ is dissolved in 100 mL of water inside a calorimeter the final temperature of the water is $38^{\circ} \mathrm{C}$.

Questions:

a) Calculate the molar heat of dissolution $\left(\Delta \mathrm{H}_{\mathrm{d}}\right)$ of Lithium chloride?
b) Write the thermochemical equation for the dissolution.

Molar heat of Dissolution of LiCl is

or
$\Delta H_{d}=-28.9 \mathrm{~kJ} / \mathrm{mol}$

- 28.9 kJ

Therefore, when 1 mole of LiCl dissolves 28.9 kJ of heat is released

Example 1:

It is observed that when 8.0 g of Lithium chloride (LiCl) at $25^{\circ} \mathrm{C}$ is dissolved in 100 mL of water inside a calorimeter the final temperature of the water is $38^{\circ} \mathrm{C}$.

Questions:
a) Calculate the molar heat of dissolution $\left(\Delta \mathrm{H}_{\mathrm{d}}\right)$ of Lithium chloride?
b) Write the thermochemical equation for the dissolution.
b) $\quad \mathrm{LiCl}_{(\mathrm{s})} \rightarrow \mathrm{Li}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-}+28.9 \mathrm{~kJ}$

If 6.5 g of Sodium Nitrate $\left(\mathrm{NaNO}_{3}\right)$ is dissolved in 100 mL of water at $24^{\circ} \mathrm{C}$. What will the final temperature of the water be if it is known that the molar heat of dissolution for Sodium Nitrate is $21 \mathrm{~kJ} / \mathrm{mol}$.

Step1: Determine if the dissolution reaction is Endothermic or Exothermic

Since $\Delta \mathrm{H}_{\mathrm{d}}$ is $(+)$, this means that the dissolution process is endothermic. It absorbs heat energy from the surrounding water

$$
\begin{aligned}
& \text { Step 2: } \begin{array}{l}
\text { Determine number of moles of } \\
\text { Sodium Nitrate being dissolved }
\end{array} \\
& \\
& \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \\
& \mathrm{n}=\frac{6.5 \mathrm{~g}}{85 \mathrm{~g} / \mathrm{mole}} \\
& \underline{\mathbf{n}=\mathbf{0 . 0 7 6} \text { moles }}
\end{aligned}
$$

Example 2:

If 6.5 g of Sodium Nitrate $\left(\mathrm{NaNO}_{3}\right)$ is dissolved in 100 mL of water at $24^{\circ} \mathrm{C}$. What will the final temperature of the water be if it is known that the molar heat of dissolution for Sodium Nitrate is $21 \mathrm{~kJ} / \mathrm{mol}$.

Step3: Calculate heat involved when 0.076moles of Sodium Nitrate are dissolved

1 moles $=21 \mathrm{~kJ}$
0.076 mole $\xlongequal[=]{=} x$

$$
x=1.596 \mathrm{~kJ}
$$

or

1596 J

Therefore, when 0.076 moles $(6.5 \mathrm{~g})$ of NaNO_{3} dissolves, 1596 J of heat is absorbed from the surrounding water.

Example 2:

If 6.5 g of Sodium Nitrate $\left(\mathrm{NaNO}_{3}\right)$ is dissolved in 100 mL of water at $24^{\circ} \mathrm{C}$. What will the final temperature of the water be if it is known that the molar heat of dissolution for Sodium Nitrate is $21 \mathrm{~kJ} / \mathrm{mol}$.
Step4: \quad Since it was determined that the dissolution
reaction was endothermic. The water must be releasing
$\mathrm{m}=100 \mathrm{~mL}=100 \mathrm{~g}$
$\mathrm{~T}_{i}=24^{\circ} \mathrm{C}$
$\mathrm{T}_{f}=? ? ?^{\circ} \mathrm{C}$
$\Delta \mathrm{T}=? ? ?^{\circ} \mathrm{C}$
$\mathrm{c}=4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
$\mathrm{Q}=-1596 \mathrm{~J}$
heat energy.
$\mathrm{Q}_{\text {water }}=-\mathrm{H}_{\mathrm{d}}$
$Q_{\text {water }}=-1596 \mathrm{~J}$
Step5: Calculate the change in temperature
$\mathrm{Q}=\mathrm{m} \cdot \mathrm{c} \cdot \Delta \mathrm{T}$
$-1596=(100)(4.18)(\Delta \mathrm{T})$
$\Delta T=-3.82{ }^{\circ} \mathrm{C}$

Example 2:

If 6.5 g of Sodium Nitrate $\left(\mathrm{NaNO}_{3}\right)$ is dissolved in 100 mL of water at $24^{\circ} \mathrm{C}$. What will the final temperature of the water be if it is known that the molar heat of dissolution for Sodium Nitrate is $21 \mathrm{~kJ} / \mathrm{mol}$.

$$
\begin{aligned}
& \mathrm{m}=100 \mathrm{~mL}=100 \mathrm{~g} \\
& \mathrm{~T}_{i}=24^{\circ} \mathrm{C} \\
& \mathrm{~T}_{f}=? ? ?{ }^{\circ} \mathrm{C} \\
& \Delta \mathrm{~T}=-3.82{ }^{\circ} \mathrm{C} \\
& \mathrm{c}=4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right) \\
& \mathrm{Q}=-1596 \mathrm{~J}
\end{aligned}
$$

Step6: Determine Final Temperature

$$
\begin{aligned}
\Delta \mathrm{T} & =\mathrm{T}_{f}-\mathrm{T}_{i} \\
-3.82 & =\mathrm{T}_{f}-24 \\
\mathbf{T}_{\mathbf{t}} & =\mathbf{2 0 . 1 8}^{\mathbf{o}} \mathbf{C}
\end{aligned}
$$

You conduct a reaction inside a calorimeter where you completely neutralize a 100 mL of NaOH at 2 M solution with 40 mL of HCl at 5 M . The initial temperatures of both the acid and the base are 22 C . During the reaction the highest temperature reached was to 38 C .
Calculate the molar heat of neutralization of NaOH ?

```
\(\mathrm{m}=(100+40)=140 \mathrm{~mL}=140 \mathrm{~g}\)
\(\mathrm{T}_{i}=22^{\circ} \mathrm{C}\)
\(\mathrm{T}_{f}=38^{\circ} \mathrm{C}\)
\(\Delta \mathrm{T}=16^{\circ} \mathrm{C}\)
\(\mathrm{c}=4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\)
\(\mathrm{Q}=\) ???
```

Step 1: Determine if the neutralization reaction is Endothermic or Exothermic

If temperature of water produced increased it must have absorbed heat energy from the neutralization reaction.

Therefore the neutralization reaction must have been EXOTHERMIC

Example 1:
You conduct a reaction inside a calorimeter where you completely neutralize a 100 mL of NaOH at 2 M solution with 40 mL of HCl at 5 M . The initial temperatures of both the acid and the base are 22 C . During the reaction the highest temperature reached was to 38 C .
Calculate the molar heat of neutralization of NaOH ?

Step2: Calculate the Quantity of heat that was absorbed by the water

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{m} \cdot \mathrm{c} \cdot \Delta \mathrm{~T} \\
& \mathrm{Q}=(140)(4.18)(16) \\
& \mathbf{Q}=\mathbf{9 3 6 3} \mathbf{J}
\end{aligned}
$$

Step3: Since it was determined that the neutralization reaction was exothermic:

$$
\begin{aligned}
& H_{n}=-Q \\
& \underline{H}_{\underline{n}}=-9363 \mathrm{~J}
\end{aligned}
$$

Therefore the neutralization released -9363 J of Heat Energy

Example 1:
You conduct a reaction inside a calorimeter where you completely neutralize a 100 mL of NaOH at 2 M solution with 40 mL of HCl at 5 M . The initial temperatures of both the acid and the base are 22 C . During the reaction the highest temperature reached was to 38 C .
Calculate the molar heat of neutralization of NaOH ?

Step4: In order to determine the Molar
Heat of neutralization of NaOH , we must
know how many moles of Sodium
Hydroxide we are dealing with:

$$
\mathrm{C}=\frac{\mathrm{n}}{\mathrm{~V}}
$$

$$
\mathrm{C} \cdot \mathrm{~V}=\mathrm{n}
$$

$(2 \mathrm{~mol} / \mathrm{L})(0.1 \mathrm{~L})=\mathrm{n}$

$$
\underline{\mathrm{n}=0.2 \mathrm{moles}}
$$

Example 1:
You conduct a reaction inside a calorimeter where you completely neutralize a 100 mL of NaOH at 2 M solution with 40 mL of HCl at 5 M . The initial temperatures of both the acid and the base are 22 C . During the reaction the highest temperature reached was to 38 C .
Calculate the molar heat of neutralization of NaOH ?

Step5: Calculate the molar heat of
neutralization $\left(\Delta \mathrm{H}_{\mathrm{n}}\right)$ for Sodium Hydroxide
$\begin{gathered}\text { 0.2 moles } \\ 1 \text { mole } \\ =\end{gathered} \begin{gathered}-9363 \mathrm{~J} \\ x\end{gathered}$

$$
\begin{array}{l}\boldsymbol{x}=\mathbf{- 4 6 8 1 5} \mathbf{~ J}\end{array}
$$

or

Molar heat of Neutralization of NaOH in this reaction is
$\underline{\Delta H_{n}}=-46.8 \mathrm{~kJ} / \mathrm{mol}$
$-46.8 \mathrm{~kJ}$
Therefore, when 1 mole of NaOH is neutralized, 46.8 kJ of heat is released

