Stoichiometry of Gases

Examples form notes:

Example 1:

Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ combusts in the presence of oxygen according to the following chemical equation:

$$
\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})} \quad+\quad 5 \mathrm{O}_{2(\mathrm{~g})} \quad \rightarrow \quad 3 \mathrm{CO}_{2(\mathrm{~g})} \quad+\quad 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) What volume of oxygen gas $\left(\mathrm{O}_{2}\right)$ is needed for the combustion of 35 L of propane (gas) if temperature and pressure are kept constant?

$\mathrm{C}_{3} \mathrm{H}_{8}{ }^{\text {(3) }}$	+	$5 \mathrm{O}_{2}$ (3)	\rightarrow	$3 \mathrm{CO}_{2}{ }^{\text {(8) }}$	+	$4 \mathrm{H}_{2} \mathrm{O}$ (8)

1 mole 5 mole

$$
\begin{gathered}
1 x=(35)(5) \\
\underline{x}=\mathbf{1 7 5 L} \text { of } \mathbf{O}_{2}
\end{gathered}
$$

b) What volume of Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ will be produced if 155 g of propane react with oxygen at SATP ?
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \quad \rightarrow \quad 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}^{(}$

Solve for Volume of Carbon Dioxide

Note: Molar mass of CO_{2} is $44 \mathrm{~g} /$ mole
$\begin{array}{ll}\text { SATP: } & T=298 \mathrm{~K} \\ & P=101.3 \mathrm{kPa}\end{array}$

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\mathrm{~V} & =\frac{\mathrm{nRT}}{\mathrm{P}} \\
\mathrm{~V} & =\frac{(10.56)(8.31)(298)}{(101.3)}
\end{aligned}
$$

$$
\underline{V}=258.3 \mathrm{~L}
$$

b) What volume of Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ will be produced if 155 g of propane react with oxygen at SATP?
$\underline{\underline{\mathrm{C}_{3} \mathrm{H}_{8}^{(g)}}+5 \mathrm{O}_{2(8)} \quad \rightarrow \quad \underline{\mathrm{CO}_{2(\mathrm{~g})}}+\quad 4 \mathrm{H}_{2} \mathrm{O}_{(8)}}$

$$
\begin{gathered}
1 \boldsymbol{x}=(3.52)(3) \\
\underline{x=10.56 \text { moles } \mathrm{CO}_{2}} \underline{ }
\end{gathered}
$$

At SATP: $\quad 1$ mole CO_{2} gas $\cdots \cdots \ldots \ldots \ldots$
10.56 moles CO_{2} gas $=\cdots, y$

$$
y=258.7 \mathrm{~L}^{\text {of } \mathrm{CO}_{2}}
$$

Example 2:

Given the following: $\quad \mathrm{H}_{2}(\mathrm{~g}) \quad+\quad \mathrm{O}_{2}{ }_{(g)} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
What mass of oxygen $\left(\mathrm{O}_{2}\right)$ reacts to produce 0.62 L of water vapour at $100^{\circ} \mathrm{C}$ and at 101.3 kPa ?

Note:
These are Not STP or SATP conditions

Step 1: Balance

Step 3:Solve for mass of Oxygen
note: Molar mass of O_{2} is $32 \mathrm{~g} / \mathrm{mole}$

$$
\begin{aligned}
& T=100^{\circ} \mathrm{C} \rightarrow 373 \mathrm{~K} \\
& P=101.3 \mathrm{kPa}
\end{aligned}
$$

$$
\mathrm{PV}=\frac{\mathrm{mRT}}{\mathrm{M}}
$$

$$
\frac{\mathrm{PVM}}{\mathrm{RT}}=\mathrm{m}
$$

$$
\frac{(101.3)(0.31)(32)}{(8.31)(373)}=\mathrm{m}
$$

$$
\underline{m}=0.32 \mathrm{~g}
$$

Example 3:

If 60 g of ammonia $\left(\mathrm{NH}_{3}\right)$ is burned at $30^{\circ} \mathrm{C}$ and 104 kPa , what volume of water vapour $\left(\mathrm{H}_{2} \mathrm{O}\right)$ will form ?

Given the following: $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Step 1:Solve for volume of NH_{3}
note: Molar mass of NH_{3} is $17 \mathrm{~g} /$ mole

$$
\begin{gathered}
\mathrm{PV}=\frac{\mathrm{mRT}}{\mathrm{M}} \\
\mathrm{~V}=\frac{\mathrm{mRT}}{\mathrm{MP}} \\
\mathrm{~V}=\frac{(60)(8.31)(303)}{(17)(104)} \\
\mathrm{V}=85.45 \mathrm{~L}
\end{gathered}
$$

$T=30^{\circ} \mathrm{C} \rightarrow 303 \mathrm{~K}$
$P=104 \mathrm{kPa}$

Example 3:

If 60 g of ammonia $\left(\mathrm{NH}_{3}\right)$ is burned at $30^{\circ} \mathrm{C}$ and 104 kPa , what volume of water vapour $\left(\mathrm{H}_{2} \mathrm{O}\right)$ will form ?

Given the following: $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Step 2: Solve for Volume of $\mathrm{H}_{2} \mathrm{O}$ using stochiometry

$$
\begin{aligned}
& \underline{4 \mathrm{NH}_{3}(\mathrm{~g})}+5 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 4 \mathrm{NO}(\mathrm{~g}) \quad+\quad \underline{6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})} \\
& 4 \text { mole }
\end{aligned}
$$

$$
\begin{aligned}
& 4 \boldsymbol{x}=(6)(85.45) \\
& \underline{x}=128.2 \mathrm{~L}^{\text {of } \mathrm{H}_{2}} \underline{\mathrm{O}}
\end{aligned}
$$

