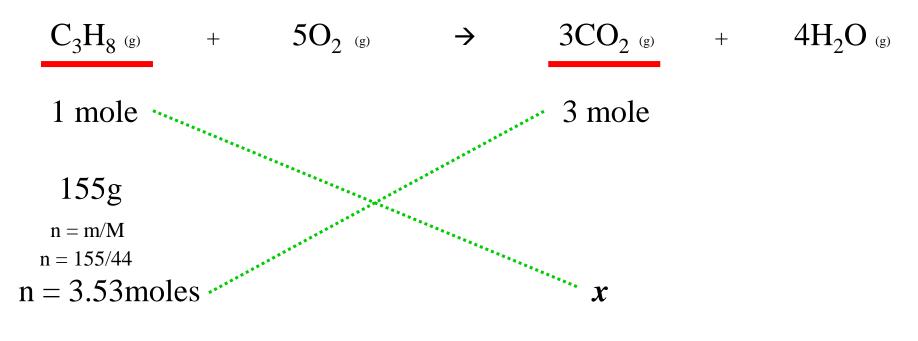
Stoichiometry of Gases

Examples form notes:

Example 1:


Propane (C_3H_8) combusts in the presence of oxygen according to the following chemical equation:

$$C_3H_8$$
 (g) $+$ $5O_2$ (g) \rightarrow $3CO_2$ (g) $+$ $4H_2O$ (g)

a) What volume of oxygen gas (O_2) is needed for the combustion of 35L of propane (gas) if temperature and pressure are kept constant?

$$1x = (35)(5)$$
$$x = 175L \text{ of } O_2$$

b) What volume of Carbon dioxide (CO₂) will be produced if 155g of propane react with oxygen at SATP?

$$1x = (3.52)(3)$$

 $x = 10.56 \text{ moles CO}_2$

Solve for Volume of Carbon Dioxide

Note: Molar mass of CO₂ is 44g/mole

SATP:
$$T = 298K$$

 $P = 101.3 \text{ kPa}$

$$PV = nRT$$

$$V = \frac{nRT}{P}$$

$$V = \frac{(10.56)(8.31)(298)}{(101.3)}$$

$$V = 258.3 L$$

b) What volume of Carbon dioxide (CO₂) will be produced if 155g of propane react with oxygen at SATP?

$$C_{3}H_{8 \text{ (g)}} + 5O_{2 \text{ (g)}} \rightarrow 3CO_{2 \text{ (g)}} + 4H_{2}O_{2 \text{ (g)}}$$

1 mole

 $155g$
 $n = m/M$
 $n = 155/44$
 $n = 3.53 \text{ moles}$

$$1x = (3.52)(3)$$

 $x = 10.56 \text{ moles CO}_2$

1 mole
$$CO_2$$
 gas = 24.5L
10.56 moles CO_2 gas = y

$$y = 258.7 \text{ L of } CO_2$$

Example 2:

Given the following:

$$H_2$$
 (g)

$$H_{2}^{(g)}$$
 + $O_{2}^{(g)}$

$$\rightarrow$$

$$H_2O\ {\rm (g)}$$

What mass of oxygen (O_2) reacts to produce 0.62 L of water vapour at 100°C and at 101.3kPa?

Note:

These are **Not STP** or **SATP** conditions

Step 1: Balance

$$2H_2$$
 (g)

$$O_2$$
 (g)

X

$$\rightarrow$$

2H₂O (g)

2 mole

0.62L

<u>Step 2</u>: Solve for Volume using stochiometry

2x = (1)(0.62) $x = 0.31 \text{ L of } O_2$

Step 3: Solve for mass of Oxygen

note: Molar mass of O_2 is 32g/mole

$$T = 100^{\circ}C \implies 373K$$

 $P = 101.3 \text{ kPa}$

$$\begin{array}{c} PV \ = \ \underline{mRT} \\ \overline{M} \end{array}$$

$$\frac{PVM}{RT} = m$$

$$\frac{(101.3)(0.31)(32)}{(8.31)(373)} = m$$

$$\mathbf{m} = \mathbf{0.32g}$$

Example 3:

If 60g of ammonia (NH₃) is burned at 30°C and 104kPa, what volume of water vapour (H₂O) will form ?

Given the following:
$$4NH_3$$
 (g) + $5O_2$ (g) \rightarrow $4NO$ (g) + $6H_2O$ (g)

<u>Step 1</u>:Solve for volume of NH₃

note: Molar mass of
$$NH_3$$
 is 17g/mole

$$T = 30^{\circ}C \rightarrow 303K$$
$$P = 104 \text{ kPa}$$

$$PV = \underline{mRT} \\ \underline{M}$$

$$V = \underline{mRT}$$
 MP

$$V = \frac{(60)(8.31)(303)}{(17)(104)}$$

$$V = 85.45 L$$

Example 3:

If 60g of ammonia (NH₃) is burned at 30°C and 104kPa, what volume of water vapour (H₂O) will form?

Given the following:
$$4NH_3$$
 (g) + $5O_2$ (g) \rightarrow $4NO$ (g) + $6H_2O$ (g)

<u>Step 2</u>: Solve for Volume of H_2O using stochiometry

$$4NH_{3}(g) + 5O_{2}(g) \rightarrow 4NO(g) + 6H_{2}O(g)$$

$$4 \text{ mole}$$

$$85.45L \qquad x$$

$$4x = (6)(85.45)$$

 $x = 128.2 \text{ L of H}_2\text{O}$