P. 104 **Ideal Gas Law**

1) According to PV=nRT, it doesn't matter what gas is being observed. Under same a) conditions of Pressure, Volume, and Temperature, the number of moles (and thus number of molecules) is the same.

293 K

b) Even though all containers contain the same amount of molecules, the mass of those molecules (gas) will vary. Use n = m/M to solve for masses.

	<u>Helium(He):</u>	n = m / M
n=PV/RT n= (104)(2) / (8.31)(295)		0.085 = m / 4
		0.34g
n= 0.085 moles of any gas	<u>Oxygen(O₂):</u>	n = m / M
		0.085 = m / 32
		2.72g

CarbonDioxide(CO2): n = m / M 0.085 = m / 443.74g

- 1. Conversion of the temperature into kelvin: 2. $T = 20^{\circ}C + 273 = 293 \text{ K}$
 - 2. Calculation of the pressure:

$$PV = \frac{mRT}{M}$$

$$P = \frac{mRT}{MV}$$

$$= \frac{32.0 \text{ g} \cdot 8.31 (\text{kPa} \cdot \text{L})/(\text{mot} \cdot \text{K}) \cdot 16.043 \text{ g/mot} \cdot 5.00 \text{L}}{16.043 \text{ g/mot} \cdot 5.00 \text{L}}$$

Answer: The pressure exerted by the methane (CH₄) will be 971 kPa.

1. Conversion of the temperature into kelvin: 3. $T = 35^{\circ}C + 273 = 308 \text{ K}$

> 2. Conversion of mL into L: $\frac{1 \text{ L}}{1000 \text{ mL}} = \frac{x}{500 \text{ mL}}$ $x = \frac{1 \text{ L} \cdot 500 \text{ mL}}{1000 \text{ mL}} = 0.500 \text{ L}$ 1000 mL

3. Calculation of the number of moles:

$$PV = nRT$$

$$n = \frac{PV}{RT}$$

$$= \frac{210 \text{ kPa} \cdot 0.500 \text{ L}}{8.31 (\text{kPa} \cdot \text{L})/(\text{mot} \cdot \text{K}) \cdot 308 \text{ K}}$$

$$= 4.10 \times 10^{-2} \text{ mot}$$

Answer: The sample contains 4.10 imes 10 2 mol of methane (CH₄).

1. Calculation of the temperature:

4.

- mRTPV -M PVM Τ = mR 85 kPa · 30 L · 17.031 g/mot 10.5 g · 8.31 (kPa · L)/(met · K)
 - = 497.73 K
- 2. Conversion of the temperature into degrees Celcius: $T_2 = 497.73 \text{ K} - 273 = 224.73^{\circ}\text{C}$

Answer: At a temperature of 225°C.

5. $T = 35^{\circ}\text{C} + 273 = 308 \text{ K}$ 2. Conversion of mL into L: $\frac{1 \text{ L}}{1000 \text{ mL}} = \frac{x}{500 \text{ mL}}$ $x = \frac{1 \text{ L} \cdot 500 \text{ mL}}{1000 \text{ L}} = 0.500 \text{ L}$ 1000 mL 3. Calculation of the number of moles: PV = nRTPV $n = \frac{r}{RT}$ 210 kPa · 0.500 L = 8.31 (kPer·L)/(mol·K) · 308 K $= 4.10 \times 10^{-2}$ mol or 41 mol Answer: The sample contains 4.10×10^{-2} mol of methane (CH₄).

1. Conversion of the temperature into kelvin:

1. Conversion of the temperature into kelvin: 6. $T = 40^{\circ}C + 273 = 313 \text{ K}$

$$P = \frac{nRT}{V}$$

$$= \frac{30 \text{ mot} \cdot 8.31 (\text{kPa} \cdot \text{L})/(\text{mot} \cdot \text{K}) \cdot 313 \text{K}}{50 \text{L}}$$

= 1560.618 kPa

Answer: The pressure exerted in the compressed air cylinder is 1.6×10^3 kPa or 1.6 MPa.

7. 1. Conversion of kg into g:

$$\frac{1 \text{ kg}}{1000 \text{ g}} = \frac{50 \text{ kg}}{x}$$
$$x = \frac{1000 \text{ g} \cdot 50 \text{ kg}}{1 \text{ kg}} = 50 000 \text{ g}$$

- 2. Conversion of the temperature into kelvin: $T = 125^{\circ}C + 273 = 398 \text{ K}$
- 3. Calculation of the volume:

$$PV = \frac{mRT}{M}$$

$$V = \frac{mRT}{MP}$$

$$= \frac{50\ 000\ \text{g} \cdot 8.31\ (\text{kPa} \cdot \text{L})/(\text{met} \cdot \text{K}) \cdot 398\ \text{K}}{31.998\ \text{g/met} \cdot 150\ \text{kPa}}$$

$$= 34\ 454\ \text{L}$$

Answer: The volume occupied by the oxygen (O_2) gas is 3.4 \times 10 4 L or 34 kL.

8. 1. Calculation of the temperature:

$$PV = \frac{mRT}{M}$$

$$T = \frac{PVM}{mR}$$

$$= \frac{85 \text{ kPs} \cdot 30 \pm \cdot 17.031 \text{ g/met}}{10.5 \text{ g} \cdot 8.31 (\text{kPs} \cdot \pm)/(\text{met} \cdot \text{K})} = 497.73 \text{ K}$$

2. Conversion of the temperature into degrees Celsius: T= 497.73 K- 273 = 224.73°C

Answer: 10.5 g of ammonia (NH_3) gas exerts a pressure of 85 kPa in a 30-L container at 225°C.

- Conversion of the temperature into kelvin: T = 100°C + 273 = 373 K
 - 2. Calculation of the molar mass:

$$PV = \frac{mRT}{M}$$
$$M = \frac{mRT}{PV}$$
$$= \frac{5.4 \text{ g} \cdot 8.31 \text{ (kPa} \cdot \text{L})/(\text{mol} \cdot \text{K}) \cdot 373 \text{ K}}{26.6 \text{ kPa} \cdot 2.6 \text{ L}}$$

= 242 g/mol

Answer: The molar mass of the gas is 2.4×10^2 g/mol.

- 10. 1. Conversion of the temperature into kelvin: $T = 40^{\circ}\text{C} + 273 = 313 \text{ K}$
 - 2. Calculation of the molar mass:

$$PV = \frac{mRT}{M}$$

$$m = \frac{PVM}{RT}$$

$$= \frac{200 \text{ kPer} \cdot 20 \text{ L} \cdot 64.063 \text{ g/mel}}{8.31 (\text{kPer} \cdot \text{L})/(\text{mel} \cdot \text{K}) \cdot 313 \text{ K}} = 99 \text{ g}$$

Answer: The mass of sulphur dioxide (SO_2) in the cylinder is 99 g.

11. 1. Conversion of the temperature into kelvin: $T = 249^{\circ}C + 273 = 522 \text{ K}$

2. Calculation of the molar mass:

$$PV = \frac{mRT}{M}$$

$$M = \frac{mRT}{PV}$$

$$= \frac{62 \text{ g} \cdot 8.31 \text{ (kPa} \cdot \text{L})/(\text{mel} \cdot \text{K}) \cdot 522 \text{ K}}{200 \text{ kPa} \cdot 10 \text{ L}}$$

$$= 134.5 \text{ g/mol}$$

Answer: The molar mass of the gas is 1.3×10^2 g/mol.

- 12. a) 1. Conversion of the temperature into kelvin: $T = 23.4^{\circ}C + 273 = 296.4 \text{ K}$
 - 2. Calculation of the mass of the gas in the cylinder: m = 9.31 g - 7.02 g = 2.29 g
 - 3. Calculation of the molar mass:

$$PV = \frac{mRT}{M}$$

$$M = \frac{mRT}{PV}$$

$$= \frac{2.29 \text{ g} \cdot 8.31 (\text{kPa} \cdot \text{L})/(\text{mol} \cdot \text{K}) \cdot 296.4 \text{ K}}{102.2 \text{ kPa} \cdot 1.25 \text{L}}$$

$$= 44.2 \text{ g/mol}$$

Answer: The molar mass of the gas is 44.2 g/mol.

b) The gas could be carbon dioxide (CO_2) .

- Conversion of the temperature into kelvin: T - 0°C + 273 = 273 K
 - 2. Calculation of the number of moles: PV nRT PV
 - $n = \frac{1}{RT}$
 - $= \frac{101.3 \text{ kPa} \cdot 11.2 \text{ kPa}}{8.31 (\text{ kPa} \cdot \text{ k})/(\text{mol} \cdot \text{ k}) \cdot 273 \text{ k}} = 0.500 \text{ mol}$

Answer: The sample contains 0.500 mol.

- 14. 1. Conversion of the temperature into kelvin: $T = -45^{\circ}\text{C} + 273 = 228 \text{ K}$
 - 2. Calculation of the volume: PV = nRT $V = \frac{nRT}{P}$ $= \frac{10 \text{ mol} \cdot 8.31 (\text{kPa} \cdot \text{L})/(\text{mol} \cdot \text{K}) \cdot 228 \text{ K}}{75.5 \text{ kPa}}$ = 250.95 L

Answer: The volume of the balloon is 2.5 X 10² L.

15. 1. Conversion of mL into L:

 $\frac{1 \text{ L}}{1000 \text{ mL}} = \frac{x}{180 \text{ mL}}$ $x = \frac{1 \text{ L} \cdot 180 \text{ mE}}{1000 \text{ mE}} = 0.180 \text{ L}$

- 2. Conversion of the temperature into kelvin: $T = 20^{\circ}C + 273 = 293 \text{ K}$
- 3. Calculation of the pressure: PV = nRT

$$P = \frac{nRT}{V}$$

= $\frac{5.8 \cdot 10^{-3} \text{ mot} \cdot 8.31 (\text{kPa} \cdot \text{L})/(\text{mot} \cdot \text{K}) \cdot 293 \text{K}}{0.180 \text{L}}$
= 78.46 kPa

Answer: The pressure of the argon (Ar) inside the bulb is 78 kPa.

16. 1. Calculation of the temperature: PV = nRT $T = \frac{PV}{nR}$ $= \frac{135 \text{ kPr} \cdot 13.65 \text{ k}}{0.75 \text{ mot} \cdot 8.31 (\text{kPr} \cdot \text{k})/(\text{mot} \cdot \text{K})} = 295.67 \text{ K}$

> 2. Conversion of the temperature into degrees Celsius: T = 295.67 K - 273 = 22.67°C

Answer: The temperature of the chlorine (Cl_2) gas is 23°C.