Kirchoff's Circuit Laws

Classroom Problems
 \& Solutions

KIRCHOFF'S LAW for Current Intensity (I): ($1^{\text {st }}$ Law)

In Series Circuits: the current is the same at every point in the circuit.

$$
I_{s}=I_{1}=I_{2}=I_{3}=I_{4}=\ldots
$$

In Parallel Circuits: the current from the battery/source equals the sum of the current intensities through each of the branch.

$$
\underset{\text { Indin }}{I_{1}}=I_{1}+I_{2}+I_{4}+\ldots
$$

KIRCHOFF'S LAW for Potential Difference (V): (2nd Law)

In Series Circuits: The Potential Difference across the battery/source is equal to the sum of individual Potential Differences across the individual resistors.

$$
\underset{\text { SERIES }}{\mathrm{V}_{\mathbf{S}}}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\mathrm{V}_{4}+\ldots
$$

In Parallel Circuits: The Potential Difference across the battery/source is the same as the potential difference across each branch.

PARALLEL

USING KIRCHOFF'S LAWS AND OHM'S LAW WE CAN NOW SOLVE VARIOUS CIRCUIT PROBLEMS

Recall:

\rightarrow

$\mathbf{I R}=\mathbf{V}$

$$
\rightarrow \quad \mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}
$$

Kirchoff's Laws Problems:

Ex:1

The following series circuit contains 5 resistors. The voltages across each resistor is given and the value of one resistor is shown. Using the information provided on the diagram determine the Potential Difference (Vs) and the Total Current (Is) from the power supply.

Kirchoff's Laws Problems:

Ex:1

The following series circuit contains 5 resistors. The voltages across each resistor is given and the value of one resistor is shown. Using the information provided on the diagram determine the Potential Difference (Vs) and the Total Current (Is) from the power supply.

Kirchoff's Laws Problems:

Ex:1

The following series circuit contains 5 resistors. The voltages across each resistor is given and the value of one resistor is shown. Using the information provided on the diagram determine the Potential Difference (Vs) and the Total Current (Is) from the power supply.

$$
\begin{aligned}
\text { Step:2 } \mathbf{I}_{2} & =\frac{\mathbf{V}_{2}}{\mathbf{R}_{2}} \\
\mathbf{I}_{2} & =\frac{60}{24} \\
\mathbf{I}_{2} & =2.5 \mathrm{~A}
\end{aligned}
$$

Step:3
$\underset{\text { Series }}{I_{S}}=I_{1}=I_{2}=I_{3}=I_{4}=I_{5}$

$$
I_{S}=2.5 \mathrm{~A}
$$

(same current everywhere in series)

Kirchoff's Laws Problems:

Ex:2

The following parallel circuit contains 4 resistors. Using the information provided on the diagram determine the Potential Difference across R_{4} and the Current flowing through R_{2}.

Kirchoff's Laws Problems:

Ex:2

The following parallel circuit contains 4 resistors. Using the information provided on the diagram determine the Potential Difference across R_{4} and the Current flowing through R_{2}.

Step:1

$$
\begin{aligned}
& \mathbf{V}_{1}=\mathbf{I}_{1} \mathbf{R}_{1} \\
& \mathbf{V}_{1}=3(15) \\
& \mathbf{V}_{1}=45 \mathrm{~V}
\end{aligned}
$$

Kirchoff's Laws Problems:

Ex:2

The following parallel circuit contains 4 resistors. Using the information provided on the diagram determine the Potential Difference across R_{4} and the Current flowing through R_{2}.

Step:2

$$
\begin{aligned}
& \underset{\text { Parallel }}{\mathbf{V}_{\mathbf{S}}}=\mathbf{V}_{1}=\mathbf{V}_{2}=\mathbf{V}_{3}=\mathbf{V}_{4} \\
& \mathbf{V}_{4}=45 \mathrm{~V}
\end{aligned}
$$

(Voltage is same in every branch)

Kirchoff's Laws Problems:

Ex:2

The following parallel circuit contains 4 resistors. Using the information provided on the diagram determine the Potential Difference across R_{4} and the Current flowing through R_{2}.

$$
\begin{aligned}
\text { Step: } 3 \quad \mathbf{I}_{2} & =\frac{\mathbf{V}_{2}}{\mathbf{R}_{2}} \\
\mathbf{I}_{2} & =\frac{\mathbf{4 5}}{\mathbf{2 5}} \\
\mathbf{I}_{2} & =\mathbf{1 . 8 A}
\end{aligned}
$$

Kirchoff's Laws Problems:

Ex:3

Given the following circuit diagram in which several ammeters have been installed:

- Ammeter A_{3} reads 2 A .
- Ammeter A_{4} reads 3 A .
- Ammeter A_{S} reads 8 A .

What is the reading on Ammeters $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{5} \mathrm{~A}_{6}$?

Ex: 3

Given the following circuit diagram in which several ammeters have been installed:

- Ammeter A_{3} reads 2 A .
- Ammeter A_{4} reads 3 A .
- Ammeter A_{S} reads 8 A .

What is the reading on Ammeters $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{5} \mathrm{~A}_{6}$?

Current (electrons) starts at positive end of the Source
Recall that when current (electrons) reach branches, it will split apart. Some of the current will go through one branch and some of the current will go through another branch

Kirchoff's Laws Problems:

Step:1

$$
\begin{gathered}
\mathrm{A}_{\mathrm{S}}=\mathrm{A}_{4}+\mathrm{A}_{1} \\
8=3+\mathrm{A}_{1} \\
\mathrm{~A}_{1}=5 \mathrm{~A}
\end{gathered}
$$

Step:2

$$
\begin{gathered}
\mathrm{A}_{1}=\mathrm{A}_{2}+\mathrm{A}_{3} \\
5=\mathrm{A}_{2}+2 \\
\mathrm{~A}_{2}=3 \mathrm{~A}
\end{gathered}
$$

Step:3
$A_{5}=A_{2}+A_{3} \quad A_{6}=A_{4}+A_{5}$
$A_{5}=3+2 \quad A_{6}=3+5$
$\mathrm{A}_{6}=8 \mathrm{~A}$
also $\left(\mathrm{A}_{\mathrm{S}}=\mathrm{A}_{5}\right)$

Follow where current splits apart and where it recombines

Kirchoff's Laws Problems:

Ex:4 Three known resistances are connected in series to the terminals of a power source. The potential difference at the terminals of the 3.0Ω resistance is 12 V .

What is the potential difference of the power source (Vs)?

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:4 Three known resistances are connected in series to the terminals of a power source. The potential difference at the terminals of the 3.0Ω resistance is 12 V .

What is the potential difference of the power source (Vs) ?

$$
V_{S}=\text { ? }
$$

$$
\text { METHOD } 1
$$

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:4 Three known resistances are connected in series to the terminals of a power source. The potential difference at the terminals of the 3.0Ω resistance is 12 V .

What is the potential difference of the power source (Vs)?

METHOD 1

$$
\begin{aligned}
\text { Step:1 } \mathbf{I}_{2} & =\frac{\mathbf{V}_{2}}{\mathbf{R}_{2}} \\
\mathbf{I}_{2} & =\frac{12}{3} \\
\mathbf{I}_{2} & =4 \mathbf{A}
\end{aligned}
$$

Step:2

$$
\begin{gathered}
\underset{\text { Series }}{\mathbf{I}_{\mathbf{S}}}=\mathbf{I}_{1}=\mathbf{I}_{2}=\mathbf{I}_{3} \\
\mathbf{I}_{\mathbf{S}}=4 \mathrm{~A}
\end{gathered}
$$

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:4 Three known resistances are connected in series to the terminals of a power source. The potential difference at the terminals of the 3.0Ω resistance is 12 V .

What is the potential difference of the power source (Vs)?

$$
\mathbf{V}_{\mathrm{S}}=?
$$

METHOD 1

Step:3

$$
\begin{gathered}
\mathbf{R}_{\mathrm{T} \text { Ses }}=\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3} \\
\mathbf{R}_{\mathrm{T}}=2+3+4 \\
\mathbf{R}_{\mathrm{T}}=\mathbf{9} \Omega
\end{gathered}
$$

Step:4

$$
\begin{aligned}
V_{S} & =I_{S} R_{T} \\
V_{S} & =4(9) \\
V_{S} & =36 \mathrm{~V}
\end{aligned}
$$

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:4 Three known resistances are connected in series to the terminals of a power source. The potential difference at the terminals of the 3.0Ω resistance is 12 V .

What is the potential difference of the power source (Vs)?

METHOD 2

$$
\begin{aligned}
\text { Step:1 } \mathbf{I}_{2} & =\frac{\mathbf{V}_{2}}{\mathbf{R}_{2}} \\
\mathbf{I}_{2} & =\frac{12}{3} \\
\mathbf{I}_{2} & =4 \mathbf{A}
\end{aligned}
$$

Step:2

$$
\begin{gathered}
\underset{\text { Series }}{\mathbf{I}_{\mathrm{S}}}=\mathbf{I}_{1}=\mathbf{I}_{2}=\mathbf{I}_{3} \\
\mathbf{I}_{\mathbf{S}}=\mathbf{4 A}
\end{gathered}
$$

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:4 Three known resistances are connected in series to the terminals of a power source. The potential difference at the terminals of the 3.0Ω resistance is 12 V .

What is the potential difference of the power source (Vs)?

METHOD 2

Step:3

$$
\begin{aligned}
\mathbf{V}_{1} & =I_{1} \mathbf{R}_{1} \\
\mathbf{V}_{1} & =4(2) \\
\mathbf{V}_{1} & =8 \mathrm{~V}
\end{aligned}
$$

Step:4

$$
\begin{aligned}
V_{3} & =I_{3} R_{3} \\
V_{3} & =4(4) \\
V_{3} & =16 \mathrm{~V}
\end{aligned}
$$

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:4 Three known resistances are connected in series to the terminals of a power source. The potential difference at the terminals of the 3.0Ω resistance is 12 V .

What is the potential difference of the power source (Vs)?

METHOD 2

Step:5

$$
\begin{gathered}
\underset{\text { Series }}{V_{S}}=V_{1}+V_{2}+V_{3} \\
V_{S}=8+12+16 \\
V_{S}=36 \mathrm{~V}
\end{gathered}
$$

(In series voltages are added for total)

Kirchoff's Laws Problems:

Ex:5 Three known resistances are connected in parallel to the terminals of a power source.
The current passing through the 4.0Ω resistance is 2.0 A .
What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

Kirchoff's Laws Problems:

2 METHODS CAN BE USED TO SOLVE THIS PROBLEM
Fill in your circuit diagram with any known information
Ex:5 Three known resistances are connected in parallel to the terminals of a power source.
The current passing through the 4.0Ω resistance is 2.0 A .
What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:5 Three known resistances are connected in parallel to the terminals of a power source. The current passing through the 4.0Ω resistance is 2.0 A .

What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

METHOD 1
Step:1

$$
\begin{aligned}
V_{2} & =I_{2} R_{2} \\
\mathbf{V}_{2} & =2(4) \\
V_{2} & =8 \mathrm{~V}
\end{aligned}
$$

Step:2

$$
\begin{gathered}
\underset{\text { Parallel }}{\mathbf{V}_{\mathbf{S}}}=\mathbf{V}_{\mathbf{1}}=\mathbf{V}_{2}=\mathbf{V}_{3} \\
\mathbf{V}_{\mathrm{S}}=\mathbf{8} \mathrm{V}
\end{gathered}
$$

(Voltage is same in every branch)

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:5 Three known resistances are connected in parallel to the terminals of a power source. The current passing through the 4.0Ω resistance is 2.0 A .

What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

METHOD 1

Step:1

$$
\begin{aligned}
V_{2} & =I_{2} R_{2} \\
V_{2} & =2(4) \\
V_{2} & =8 \mathrm{~V}
\end{aligned}
$$

Step:2

$$
\begin{gathered}
\underset{\text { Parallel }}{\mathbf{V}_{\mathbf{S}}}=\mathbf{V}_{\mathbf{1}}=\mathbf{V}_{2}=\mathbf{V}_{3} \\
\mathbf{V}_{\mathbf{S}}=\mathbf{8} \mathbf{V}
\end{gathered}
$$

(Voltage is same in every branch)

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:5 Three known resistances are connected in parallel to the terminals of a power source. The current passing through the 4.0Ω resistance is 2.0 A .

What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

$$
\mathrm{V}_{\mathrm{S}}=\mathbf{8 v}
$$

METHOD 1

Step: 3

$$
\begin{gathered}
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathbf{R}_{2}}+\frac{1}{\mathrm{R}_{3}} \\
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{6}+\frac{1}{4}+\frac{1}{12} \\
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1(2)+1(3)+1(1)}{12} \\
\mathbf{R}_{\mathrm{T}}=2 \Omega
\end{gathered}
$$

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:5 Three known resistances are connected in parallel to the terminals of a power source. The current passing through the 4.0Ω resistance is 2.0 A .

What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

METHOD 1

Step:4

$$
\begin{aligned}
& I_{S}=\frac{V_{S}}{R_{T}} \\
& I_{S}=\frac{8}{2} \\
& I_{S}=4 \mathrm{~A}
\end{aligned}
$$

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:5 Three known resistances are connected in parallel to the terminals of a power source.
The current passing through the 4.0Ω resistance is 2.0 A .
What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:5 Three known resistances are connected in parallel to the terminals of a power source. The current passing through the 4.0Ω resistance is 2.0 A .

What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

METHOD 2

Step:1

$$
\begin{aligned}
V_{2} & =I_{2} R_{2} \\
\mathbf{V}_{2} & =2(4) \\
V_{2} & =8 \mathrm{~V}
\end{aligned}
$$

Step:2

$$
\begin{gathered}
\underset{\text { Parallel }}{\mathbf{V}_{\mathrm{S}}}=\mathbf{V}_{\mathbf{1}}=\mathbf{V}_{2}=\mathbf{V}_{3} \\
\mathbf{V}_{\mathrm{S}}=\mathbf{8} \mathrm{V}
\end{gathered}
$$

(Voltage is same in every branch)

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:5 Three known resistances are connected in parallel to the terminals of a power source. The current passing through the 4.0Ω resistance is 2.0 A .

What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

METHOD 2

$$
\begin{aligned}
\text { Step:3 } \mathbf{I}_{1} & =\frac{\mathbf{V}_{1}}{\mathbf{R}_{1}} & \text { Step: } \mathbf{I}_{3} & =\frac{\mathbf{V}_{3}}{\mathbf{R}_{\mathbf{3}}} \\
\mathbf{I}_{1} & =\frac{\mathbf{8}}{\mathbf{6}} & \mathbf{I}_{3} & =\frac{\mathbf{8}}{\mathbf{1 2}} \\
\mathbf{I}_{\mathbf{1}} & =\mathbf{1 . 3 3 A} & \mathbf{I}_{3} & =\mathbf{0 . 6 6} \mathbf{A}
\end{aligned}
$$

Kirchoff's Laws Problems:

Fill in your circuit diagram with any known information
Ex:5 Three known resistances are connected in parallel to the terminals of a power source. The current passing through the 4.0Ω resistance is 2.0 A .

What is the intensity of the current coming from the power source $\left(\mathrm{I}_{\mathrm{S}}\right)$?

METHOD 2

Step:5

$$
\begin{aligned}
& \underset{\text { Parallel }}{\mathbf{P}_{S}}=\mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3} \\
& \mathbf{I}_{\mathrm{S}}=1.33+2+0.66 \\
& \mathbf{I}_{\mathrm{S}}=4 \mathrm{~A}
\end{aligned}
$$

(Total current is added in parallel)

